Real-space spectral simulation of quantum spin models: Application to generalized Kitaev models

Author:

Brito Francisco M. O.1,Ferreira Aires1

Affiliation:

1. University of York

Abstract

The proliferation of quantum fluctuations and long-range entanglement presents an outstanding challenge for the numerical simulation of interacting spin systems with exotic ground states. Here, we present a toolset of Chebyshev polynomial-based iterative methods that provides a unified framework to study the thermodynamical properties, critical behavior and dynamics of frustrated quantum spin models with controlled accuracy. Similar to previous applications of the Chebyshev spectral methods to condensed matter systems, the algorithmic complexity scales linearly with the Hilbert space dimension and the Chebyshev truncation order. Using this approach, we study two paradigmatic quantum spin models on the honeycomb lattice: the Kitaev-Heisenberg (K-H) and the Kitaev-Ising (K-I) models. We start by applying the Chebyshev toolset to compute nearest-neighbor spin correlations, specific heat and entropy of the K-H model on a 24-spin cluster. Our results are benchmarked against exact diagonalization and a popular iterative method based on thermal pure quantum states. The transitions between a variety of magnetic phases, namely ferromagnetic, Néel, zigzag and stripy antiferromagnetic and quantum spin liquid phases are obtained accurately and efficiently. We also determine the temperature dependence of the spin correlations, over more than three decades in temperature, by means of a finite temperature Chebyshev polynomial method introduced here. Finally, we report novel dynamical signatures of the quantum phase transitions in the K-I model. Our findings suggest that the efficiency, versatility and low-temperature stability of the Chebyshev framework developed here could pave the way for previously unattainable studies of quantum spin models in two dimensions.

Funder

Engineering and Physical Sciences Research Council

Royal Society

Publisher

Stichting SciPost

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3