Affiliation:
1. Abdus Salam International Centre for Theoretical Physics
2. International School for Advanced Studies
3. Singapore University of Technology and Design
4. National University of Singapore
5. INFN Sezione di Catania
6. University of Catania
Abstract
Recently there has been an intense effort to understand measurement induced transitions, but we still lack a good understanding of non-Markovian effects on these phenomena. To that end, we consider two coupled chains of free fermions, one acting as the system of interest, and one as a bath. The bath chain is subject to Markovian measurements, resulting in an effective non-Markovian dissipative dynamics acting on the system chain which is still amenable to numerical studies in terms of quantum trajectories. Within this setting, we study the entanglement within the system chain, and use it to characterize the phase diagram depending on the ladder hopping parameters and on the measurement probability. For the case of pure state evolution, the system is in an area law phase when the internal hopping of the bath chain is small, while a non-area law phase appears when the dynamics of the bath is fast. The non-area law exhibits a logarithmic scaling of the entropy compatible with a conformal phase, but also displays linear corrections for the finite system sizes we can study. For the case of mixed state evolution, we instead observe regions with both area, and non-area scaling of the entanglement negativity. We quantify the non-Markovianity of the system chain dynamics and find that for the regimes of parameters we study, a stronger non-Markovianity is associated to a larger entanglement within the system.
Funder
Deutsche Forschungsgemeinschaft
European Research Council
Ministerio de Ciencia e Innovación
Ministero dell'Università e della Ricerca
Ministero dell’Istruzione, dell’Università e della Ricerca
Ministry of Education - Singapore
Simons Foundation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献