Affiliation:
1. City University of New York
2. The Graduate Center, CUNY
Abstract
We study quantum dynamics on noncommutative spaces of negative curvature, focusing on the hyperbolic plane with spatial noncommutativity in the presence of a constant magnetic field. We show that the synergy of noncommutativity and the magnetic field tames the exponential divergence of operator growth caused by the negative curvature of the hyperbolic space. Their combined effect results in a first-order transition at a critical value of the magnetic field in which strong quantum effects subdue the exponential divergence for all energies, in stark contrast to the commutative case, where for high enough energies operator growth always diverge exponentially. This transition manifests in the entanglement entropy between the `left' and `right' Hilbert spaces of spatial degrees of freedom. In particular, the entanglement entropy in the lowest Landau level vanishes beyond the critical point. We further present a non-linear solvable bosonic model that realizes the underlying algebraic structure of the noncommutative hyperbolic plane with a magnetic field.
Funder
National Science Foundation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献