A comprehensive study of the velocity, momentum and position matrix elements for Bloch states: Application to a local orbital basis

Author:

Esteve-Paredes Juan José1,Palacios Juan José1

Affiliation:

1. Autonomous University of Madrid

Abstract

We present a comprehensive study of the velocity operator, \hat{\boldsymbol{v}}=\frac{i}{\hbar} [\hat{H},\hat{\boldsymbol{r}}]\,𝐯̂=i[Ĥ,𝐫̂], when used in crystalline solids calculations. The velocity operator is key to the evaluation of a number of physical properties and its computation, both from a practical and fundamental perspective, has been a long-standing debate for decades. Our work summarizes the different approaches found in the literature, but never connected before in a comprehensive manner. In particular we show how one can compute the velocity matrix elements following two different routes. One where the commutator is explicitly used and another one where the commutator is avoided by relying on the Berry connection. We work out an expression in the latter scheme to compute velocity matrix elements, generalizing previous results. In addition, we show how this procedure avoids ambiguous mathematical steps and how to properly deal with the two popular gauge choices that coexist in the literature. As an illustration of all this, we present several examples using tight-binding models and local density functional theory calculations, in particular using Gaussian-type localized orbitals as basis sets. We show how the the velocity operator cannot be approximated, in general, by the k-gradient of the Bloch Hamiltonian matrix when a non-orthonormal basis set is used. Finally, we also compare with its real-space evaluation through the identification with the canonical momentum operator when possible. This comparison offers us, in addition, a glimpse of the importance of non-local corrections, which may invalidate the naive momentum-velocity correspondence.

Funder

Agencia Estatal de Investigación

Comunidad de Madrid

Generalitat Valenciana

Ministerio de Economía y Competitividad

Universidad Autónoma de Madrid

Publisher

Stichting SciPost

Subject

Statistical and Nonlinear Physics,Atomic and Molecular Physics, and Optics,Nuclear and High Energy Physics,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3