Abstract
We show how the replica method can be used to compute the asymptotic eigenvalue spectrum of a real Wishart product matrix. For unstructured factors, this provides a compact, elementary derivation of a polynomial condition on the Stieltjes transform first proved by Müller [IEEE Trans. Inf. Theory. 48, 2086-2091 (2002)]. We then show how this computation can be extended to ensembles where the factors are drawn from matrix Gaussian distributions with general correlation structure. For both unstructured and structured ensembles, we derive polynomial conditions on the average values of the minimum and maximum eigenvalues, which in the unstructured case match the results obtained by Akemann, Ipsen, and Kieburg [Phys. Rev. E 88, 052118 (2013)] for the complex Wishart product ensemble.
Funder
Google
National Science Foundation
Subject
Statistical and Nonlinear Physics,Atomic and Molecular Physics, and Optics,Nuclear and High Energy Physics,Condensed Matter Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献