Classical and quantum harmonic mean-field models coupled intensively and extensively with external baths

Author:

Andreucci Francesco12,Lepri Stefano34,Ruffo Stefano132,Trombettoni Andrea1526

Affiliation:

1. INFN Trieste

2. International School for Advanced Studies

3. Institute for Complex Systems

4. National Institute for Nuclear Physics

5. Institute of Structure of Matter

6. University of Trieste

Abstract

We study the nonequilibrium steady-state of a fully-coupled network of N quantum harmonic oscillators, interacting with two thermal reservoirs. Given the long-range nature of the couplings, we consider two setups: one in which the number of particles coupled to the baths is fixed (intensive coupling) and one in which it is proportional to the size N (extensive coupling). In both cases, we compute analytically the heat fluxes and the kinetic temperature distributions using the nonequilibrium Green's function approach, both in the classical and quantum regimes. In the large N limit, we derive the asymptotic expressions of both quantities as a function of N and the temperature difference between the baths. We discuss a peculiar feature of the model, namely that the bulk temperature vanishes in the thermodynamic limit, due to a decoupling of the dynamics of the inner part of the system from the baths. At variance with the usual case, this implies that the steady-state depends on the initial state of the bulk particles. We also show that quantum effects are relevant only below a characteristic temperature that vanishes as 1/N. In the quantum low-temperature regime the energy flux is proportional to the universal quantum of thermal conductance.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Stichting SciPost

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3