Dynamical localization and slow thermalization in a class of disorder-free periodically driven one-dimensional interacting systems

Author:

Aditya Sreemayee1,Sen Diptiman1

Affiliation:

1. Indian Institute of Science Bangalore

Abstract

We study if the interplay between dynamical localization and interactions in periodically driven quantum systems can give rise to anomalous thermalization behavior. Specifically, we consider one-dimensional models with interacting spinless fermions with nearest-neighbor hopping and density-density interactions, and a periodically driven on-site potential with spatial periodicity m=2 and m=4. At a dynamical localization point, these models evade thermalization either due to the presence of an extensive number of conserved quantities (for weak interactions) or due to the kinetic constraints caused by drive-induced resonances (for strong interactions). Our models therefore illustrate interesting mechanisms for generating constrained dynamics in Floquet systems which are difficult to realize in an undriven system.

Funder

Science and Engineering Research Board

Publisher

Stichting SciPost

Subject

Statistical and Nonlinear Physics,Atomic and Molecular Physics, and Optics,Nuclear and High Energy Physics,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3