Quantum aspects of chaos and complexity from bouncing cosmology: A study with two-mode single field squeezed state formalism

Author:

Bhargava Parth1,Choudhury Sayantan234,Chowdhury Satyaki34,Mishara Anurag5,Selvam Sachin Panneer6,Panda Sudhakar34,Pasquino Gabriel D.7

Affiliation:

1. RWTH Aachen University

2. Max Planck Institute for Gravitational Physics

3. Homi Bhabha National Institute

4. National Institute of Science Education and Research

5. National Institute of Technology Rourkela

6. Birla Institute of Technology and Science - Hyderabad Campus

7. University of Waterloo

Abstract

Circuit Complexity, a well known computational technique has recently become the backbone of the physics community to probe the chaotic behaviour and random quantum fluctuations of quantum fields. This paper is devoted to the study of out-of-equilibrium aspects and quantum chaos appearing in the universe from the paradigm of two well known bouncing cosmological solutions viz. Cosine hyperbolic and Exponential models of scale factors. Besides circuit complexity, we use the Out-of-Time Ordered correlation (OTOC) functions for probing the random behaviour of the universe both at early and the late times. In particular, we use the techniques of well known two-mode squeezed state formalism in cosmological perturbation theory as a key ingredient for the purpose of our computation. To give an appropriate theoretical interpretation that is consistent with the observational perspective we use the scale factor and the number of e-foldings as a dynamical variable instead of conformal time for this computation. From this study, we found that the period of post bounce is the most interesting one. Though it may not be immediately visible but an exponential rise can be seen in the complexity once the post bounce feature is extrapolated to the present time scales. We also find within the very small acceptable error range a universal connecting relation between Complexity computed from two different kinds of cost functionals-linearly weighted and geodesic weighted with the OTOC. Furthermore, from the complexity computation obtained from both the cosmological models under consideration and also using the well known Maldacena (M) Shenker (S) Stanford (S) bound on quantum Lyapunov exponent, \lambda\leq 2\pi/\betaλ2π/β for the saturation of chaos, we estimate the lower bound on the equilibrium temperature of our universe at the late time scale. Finally, we provide a rough estimation of the scrambling time scale in terms of the conformal time.

Funder

Department of Science and Technology, Ministry of Science and Technology

European Research Council

Publisher

Stichting SciPost

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3