Improved Hilbert space exploration algorithms for finite temperature calculations

Author:

de Klerk Albertus J. J. M.1,Caux Jean-Sébastien1

Affiliation:

1. University of Amsterdam

Abstract

Computing correlation functions in strongly-interacting quantum systems is one of the most important challenges of modern condensed matter theory, due to their importance in the description of many physical observables. Simultaneously, this challenge is one of the most difficult to address, due to the inapplicability of traditional perturbative methods or the few-body limitations of numerical approaches. For special cases, where the model is integrable, methods based on the Bethe Ansatz have succeeded in computing the spectrum and given us analytical expressions for the matrix elements of physically important operators. However, leveraging these results to compute correlation functions generally requires the numerical evaluation of summations over eigenstates. To perform these summations efficiently, Hilbert space exploration algorithms have been developed which has resulted most notably in the ABACUS library. While this performs quite well for correlations on ground states or low-entropy states, the case of high entropy states (most importantly at finite temperatures or after a quantum quench) is more difficult, and leaves room for improvement. In this work, we develop a new Hilbert space exploration algorithm for the Lieb-Liniger model, specially tailored to optimize the computational order on finite-entropy states for correlations of density-related operators.

Funder

European Research Council

Publisher

Stichting SciPost

Subject

Statistical and Nonlinear Physics,Atomic and Molecular Physics, and Optics,Nuclear and High Energy Physics,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exact results of dynamical structure factor of Lieb–Liniger model;Journal of Physics A: Mathematical and Theoretical;2023-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3