Affiliation:
1. Institute of Physics Belgrade
2. University of Novi Sad
3. University of Belgrade
Abstract
We construct a 2D holographic ionic lattice with hyperscaling-violating infrared geometry and study single-electron spectral functions (“ARPES photoemission curves”) on this background. The spectra typically show a three-peak structure, where the central peak undergoes a crossover from a sharp but not Fermi-liquid-like quasiparticle to a wide incoherent maximum, and the broad side peaks resemble the Hubbard bands. These findings are partially explained by a perturbative near-horizon analysis of the bulk Dirac equation. Comparing the holographic Green functions in imaginary frequency with the Green functions of the Hubbard model obtained from quantum Monte Carlo, we find that the holographic model provides a very good fit to the Hubbard Green function. However, the information loss when transposing the holographic Green functions to imaginary frequencies implies that a deeper connection to Hubbard-like models remains questionable.
Funder
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Science Fund of the Republic of Serbia
Subject
Statistical and Nonlinear Physics,Atomic and Molecular Physics, and Optics,Nuclear and High Energy Physics,Condensed Matter Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献