Out-of-equilibrium dynamics of two interacting optically-trapped particles

Author:

Dotsenko Victor S1,Imparato Alberto2,Viot Pascal1,Oshanin Gleb1

Affiliation:

1. Sorbonne University

2. Aarhus University

Abstract

We present a theoretical analysis of a non-equilibrium dynamics in a model system consisting of two particles which move randomly on a plane. The two particles interact via a harmonic potential, experience their own (independent from each other) noises characterized by two different temperatures T_1T1 and T_2T2, and each particle is being held by its own optical tweezer. Such a system with two particles coupled by hydrodynamic interactions was previously realised experimentally in Bérut et al. [EPL 107, 60004 (2014)], and the difference between two temperatures has been achieved by exerting an additional noise on either of the tweezers. Framing the dynamics in terms of two coupled over-damped Langevin equations, we show that the system reaches a non-equilibrium steady-state with non-zero (for T_1 \neq T_2T1T2) probability currents that possess non-zero curls. As a consequence, in this system the particles are continuously spinning around their centers of mass in a completely synchronized way - the curls of currents at the instantaneous positions of two particles have the same magnitude and sign. Moreover, we demonstrate that the components of currents of two particles are strongly correlated and undergo a rotational motion along closed elliptic orbits.

Publisher

Stichting SciPost

Subject

Statistical and Nonlinear Physics,Atomic and Molecular Physics, and Optics,Nuclear and High Energy Physics,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3