Abstract
We present a theoretical analysis of a non-equilibrium dynamics in a model system consisting of two particles which move randomly on a plane. The two particles interact via a harmonic potential, experience their own (independent from each other) noises characterized by two different temperatures T_1T1 and T_2T2, and each particle is being held by its own optical tweezer. Such a system with two particles coupled by hydrodynamic interactions was previously realised experimentally in Bérut et al. [EPL 107, 60004 (2014)], and the difference between two temperatures has been achieved by exerting an additional noise on either of the tweezers. Framing the dynamics in terms of two coupled over-damped Langevin equations, we show that the system reaches a non-equilibrium steady-state with non-zero (for T_1 \neq T_2T1≠T2) probability currents that possess non-zero curls. As a consequence, in this system the particles are continuously spinning around their centers of mass in a completely synchronized way - the curls of currents at the instantaneous positions of two particles have the same magnitude and sign. Moreover, we demonstrate that the components of currents of two particles are strongly correlated and undergo a rotational motion along closed elliptic orbits.
Subject
Statistical and Nonlinear Physics,Atomic and Molecular Physics, and Optics,Nuclear and High Energy Physics,Condensed Matter Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献