Generative learning for the problem of critical slowing down in lattice Gross-Neveu model

Author:

Singha Ankur1,Chakrabarti Dipankar1,Arora Vipul1

Affiliation:

1. Indian Institute of Technology Kanpur

Abstract

In lattice field theory, Monte Carlo simulation algorithms get highly affected by critical slowing down in the critical region, where autocorrelation time increases rapidly. Hence the cost of generation of lattice configurations near the critical region increases sharply. In this paper, we use a Conditional Generative Adversarial Network (C-GAN) for sampling lattice configurations. We train the C-GAN on the dataset consisting of Hybrid Monte Carlo (HMC) samples in regions away from the critical region, i.e., in the regions where the HMC simulation cost is not so high. Then we use the trained C-GAN model to generate independent samples in the critical region. We perform both interpolation and extrapolation to the critical region. Thus, the overall computational cost is reduced. We test our approach for Gross-Neveu model in 1+1 dimension. We find that the observable distributions obtained from the proposed C-GAN model match with those obtained from HMC simulations, while circumventing the problem of critical slowing down.

Publisher

Stichting SciPost

Subject

Statistical and Nonlinear Physics,Atomic and Molecular Physics, and Optics,Nuclear and High Energy Physics,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3