Affiliation:
1. Indian Institute of Science Bangalore
2. ICTP South American Institute for Fundamental Research
Abstract
We analyze the effect of a simple coin operator, built out of Bell pairs, in a 2d Discrete Quantum Random Walk (DQRW) problem. The specific form of the coin enables us to find analytical and closed form solutions to the recursion relations of the DQRW. The coin induces entanglement between the spin and position degrees of freedom, which oscillates with time and reaches a constant value asymptotically. We probe the entangling properties of the coin operator further, by two different measures. First, by integrating over the space of initial tensor product states, we determine the Entangling Power of the coin operator. Secondly, we compute the Generalized Relative Rényi Entropy between the corresponding density matrices for the entangled state and the initial pure unentangled state. Both the Entangling Power and Generalized Relative Rényi Entropy behaves similar to the entanglement with time. Finally, in the continuum limit, the specific coin operator reduces the 2d DQRW into two 1d massive fermions coupled to synthetic gauge fields, where both the mass term and the gauge fields are built out of the coin parameters.
Funder
Fundação de Amparo à Pesquisa do Estado de São Paulo
Subject
Statistical and Nonlinear Physics,Atomic and Molecular Physics, and Optics,Nuclear and High Energy Physics,Condensed Matter Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献