Affiliation:
1. University of Manchester
Abstract
The Single Instruction, Multiple Thread (SIMT) paradigm of GPU programming does not support the branching nature of a parton shower algorithm by definition. However, modern GPUs are designed to schedule threads with diverging processes independently, allowing them to handle such branches. With regular thread synchronisation and careful treatment of the individual steps, one can simulate a parton shower on a GPU. We present a Sudakov veto algorithm designed to simulate parton branching on multiple events in parallel. We also release a CUDA C++ program that generates matrix elements, showers partons and computes jet rates and event shapes for LEP at 91.2 GeV on a GPU. To benchmark its performance, we also provide a near-identical C++ program designed to simulate events serially on a CPU. While the consequences of branching are not absent, we demonstrate that a GPU can provide the throughput of a many-core CPU. As an example, we show that the time taken to shower 10^6106 events on one NVIDIA TESLA V100 GPU is equivalent to that of 295 Intel Xeon E5-2620 CPU cores.
Funder
Science and Technology Facilities Council
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献