Boundary chaos: Exact entanglement dynamics

Author:

Fritzsch Felix1,Ghosh Roopayan21,Prosen Tomaž1

Affiliation:

1. University of Ljubljana

2. University College London

Abstract

We compute the dynamics of entanglement in the minimal setup producing ergodic and mixing quantum many-body dynamics, which we previously dubbed boundary chaos. This consists of a free, non-interacting brickwork quantum circuit, in which chaos and ergodicity is induced by an impurity interaction, i.e., an entangling two-qudit gate, placed at the system’s boundary. We compute both the conventional bipartite entanglement entropy with respect to a connected subsystem including the impurity interaction for initial product states as well as the so-called operator entanglement entropy of initial local operators. Thereby we provide exact results in a particular scaling limit of both time and system size going to infinity for either very small or very large subsystems. We show that different classes of impurity interactions lead to very distinct entanglement dynamics. For impurity gates preserving a local product state forming the bulk of the initial state, entanglement entropies of states show persistent spikes with period set by the system size and suppressed entanglement in between, contrary to the expected linear growth in ergodic systems. We observe similar dynamics of operator entanglement for generic impurities. In contrast, for T-dual impurities, which remain unitary under partial transposition, we find entanglement entropies of both states and operators to grow linearly in time with the maximum possible speed allowed by the geometry of the system. The intensive nature of interactions in all cases causes entanglement to grow on extensive time scales proportional to system size.

Funder

Deutsche Forschungsgemeinschaft

Javna Agencija za Raziskovalno Dejavnost RS

UK Research and Innovation

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3