Affiliation:
1. Johannes Gutenberg University of Mainz
2. University of California, Santa Barbara
Abstract
The coherent superposition of quantum states is an important resource for quantum information processing which distinguishes quantum dynamics and information from their classical counterparts. In this article we determine the coherence requirements to communicate quantum information in a broad setting encompassing monitored quantum dynamics and quantum error correction codes. We determine these requirements by considering hybrid circuits that are generated by a quantum information game played between two opponents, Alice and Eve, who compete by applying unitaries and measurements on a fixed number of qubits. Alice applies unitaries in an attempt to maintain quantum channel capacity, while Eve applies measurements in an attempt to destroy it. By limiting the coherence generating or destroying operations available to each opponent, we determine Alice’s coherence requirements. When Alice plays a random strategy aimed at mimicking generic monitored quantum dynamics, we discover a coherence-tuned phase transitions in entanglement and quantum channel capacity. We then derive a theorem giving the minimum coherence required by Alice in any successful strategy, and conclude by proving that coherence sets an upper bound on the code distance in any stabelizer quantum error correction code. Such bounds provide a rigorous quantification of the coherence resource requirements for quantum communication and error correction.
Funder
Deutsche Forschungsgemeinschaft
Heising-Simons Foundation
Ministeriums für Wissenschaft, Weiterbildung und Kultur, Rheinland-Pfalz
National Science Foundation
Simons Foundation
Subject
General Physics and Astronomy
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献