A convenient Keldysh contour for thermodynamically consistent perturbative and semiclassical expansions

Author:

Cavina Vasco1,Kadijani Sadeq S.1,Esposito Massimiliano1,Schmidt Thomas L.12

Affiliation:

1. University of Luxembourg

2. Victoria University of Wellington

Abstract

The work fluctuation theorem (FT) is a symmetry connecting the moment generating functions (MGFs) of the work extracted in a given process and in its time-reversed counterpart. We show that, equivalently, the FT for work in isolated quantum systems can be expressed as an invariance property of a modified Keldysh contour. Modified contours can be used as starting points of perturbative and path integral approaches to quantum thermodynamics, as recently pointed out in the literature. After reviewing the derivation of the contour-based perturbation theory, we use the symmetry of the modified contour to show that the theory satisfies the FT at every order. Furthermore, we extend textbook diagrammatic techniques to the computation of work MGFs, showing that the contributions of the different Feynman diagrams can be added to obtain a general expression of the work statistics in terms of a sum of independent rescaled Poisson processes. In this context, the FT takes the form of a detailed balance condition linking every Feynman diagram with its time-reversed variant. In the second part, we study path integral approaches to the calculation of the MGF, and discuss how the arbitrariness in the choice of the contour impacts the final form of the path integral action. In particular, we show how using a symmetrized contour makes it possible to easily generalize the Keldysh rotation in the context of work statistics, a procedure paving the way to a semiclassical expansion of the work MGF. Furthermore, we use our results to discuss a generalization of the detailed balance conditions at the level of the quantum trajectories.

Funder

Fonds National de la Recherche Luxembourg

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3