A symmetry algebra in double-scaled SYK

Author:

Lin Henry W.1,Stanford Douglas1

Affiliation:

1. Stanford University

Abstract

The double-scaled limit of the Sachdev-Ye-Kitaev (SYK) model takes the number of fermions and their interaction number to infinity in a coordinated way. In this limit, two entangled copies of the SYK model have a bulk description of sorts known as the “chord Hilbert space”. We analyze a symmetry algebra acting on this Hilbert space, generated by the two Hamiltonians together with a two-sided operator known as the chord number. This algebra is a deformation of the JT gravitational algebra, and it contains a subalgebra that is a deformation of the \mathfrak{sl}_2𝔰𝔩2 near-horizon symmetries. The subalgebra has finite-dimensional unitary representations corresponding to matter moving around in a discrete Einstein-Rosen bridge. In a semiclassical limit the discreteness disappears and the subalgebra simplifies to \mathfrak{sl}_2𝔰𝔩2, but with a non-standard action on the boundary time coordinate. One can make the action of \mathfrak{sl}_2𝔰𝔩2 algebra more standard at the cost of extending the boundary circle to include some “fake” portions. Such fake portions also accommodate certain subtle states that survive the semi-classical limit, despite oscillating on the scale of discreteness. We discuss applications of this algebra, including sub-maximal chaos, the traversable wormhole protocol, and a two-sided OPE.

Funder

Alfred P. Sloan Foundation

Simons Foundation

United States Department of Energy

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Operator size growth in Lindbladian SYK;Journal of High Energy Physics;2024-08-13

2. Quantum gravity of the Heisenberg algebra;Journal of High Energy Physics;2024-08-13

3. More on doubled Hilbert space in double-scaled SYK;Physics Letters B;2024-08

4. Holography on the quantum disk;Journal of High Energy Physics;2024-06-12

5. Doubled Hilbert space in double-scaled SYK;Journal of High Energy Physics;2024-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3