A time-dependent momentum-resolved scattering approach to core-level spectroscopies

Author:

Zawadzki Krissia1,Nocera Alberto2,Feiguin Adrian3

Affiliation:

1. Trinity College Dublin

2. University of British Columbia

3. Northeastern University

Abstract

While new light sources allow for unprecedented resolution in experiments with X-rays, a theoretical understanding of the scattering cross-section is lacking. In the particular case of strongly correlated electron systems, numerical techniques are quite limited, since conventional approaches rely on calculating a response function (Kramers-Heisenberg formula) that is obtained from a perturbative analysis of scattering processes in the frequency domain. This requires a knowledge of a full set of eigenstates in order to account for all intermediate processes away from equilibrium, limiting the applicability to small tractable systems. In this work, we present an alternative paradigm, recasting the problem in the time domain and explicitly solving the time-dependent Schrödinger equation without the limitations of perturbation theory: a faithful simulation of the scattering processes taking place in actual experiments, including photons and core electrons. We show how this approach can yield the full time and momentum resolved Resonant Inelastic X-Ray Scattering (RIXS) spectrum of strongly interacting many-body systems. We demonstrate the formalism with an application to Mott insulating Hubbard chains using the time-dependent density matrix renormalization group method, which does not require a priory knowledge of the eigenstates and can solve very large systems with dozens of orbitals. This approach can readily be applied to systems out of equilibrium without modification and generalized to other spectroscopies.

Funder

Canada First Research Excellence Fund

Schlumberger Foundation

United States Department of Energy

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3