Solving 3d gravity with Virasoro TQFT

Author:

Collier Scott1,Eberhardt Lorenz2,Zhang Mengyang1

Affiliation:

1. Princeton University

2. Institute for Advanced Study

Abstract

We propose a precise reformulation of 3d quantum gravity with negative cosmological constant in terms of a topological quantum field theory based on the quantization of the Teichmüller space of Riemann surfaces that we refer to as “Virasoro TQFT”. This TQFT is similar, but importantly not equivalent, to SL(2, \mathbb{R}) Chern-Simons theory. This sharpens the folklore that 3d gravity is related to SL(2, \mathbb{R}) Chern-Simons theory into a precise correspondence, and resolves some well-known issues with this lore at the quantum level. Our proposal is computationally very useful and provides a powerful tool for the further study of 3d gravity. In particular, we explain how together with standard TQFT surgery techniques this leads to a fully algorithmic procedure for the computation of the gravity partition function on a fixed topology exactly in the central charge. Mathematically, the relation leads to many nontrivial conjectures for hyperbolic 3-manifolds, Virasoro conformal blocks and crossing kernels.

Funder

National Science Foundation

Princeton University

United States Department of Energy

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nambu-Goto equation from three-dimensional gravity;Journal of High Energy Physics;2024-09-04

2. Modular average and Weyl anomaly in two-dimensional Schwarzian theory;Nuclear Physics B;2024-09

3. On the Virasoro fusion kernel at $c=25$;SciPost Physics;2024-08-22

4. Rigorous Holographic Bound on AdS Scale Separation;Physical Review Letters;2024-08-05

5. S-move matrix in the NS sector of N = 1 super Liouville field theory;Journal of High Energy Physics;2024-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3