Connected correlations in partitioning protocols: A case study and beyond

Author:

Bocini Saverio1

Affiliation:

1. University of Paris-Saclay

Abstract

The assumption of local relaxation in inhomogeneous quantum quenches allows to compute asymptotically the expectation value of local observables via hydrodynamic arguments known as generalized hydrodynamics (GHD). In this work we address formally the question of when an observable is local enough to be described by GHD using the playground of partitioning protocols and non-interacting time evolution. We show that any state evolving under a quadratic Hamiltonian can be described via a set of decoupled dynamical fields such that one of those fields can be identified with a space-time-dependent generalisation of the root density. By studying the contribution to a connected spin correlation of each of those fields independently, we derive the locality conditions under which an observable can be described using the root density only. That shows both the regime of validity for hydrodynamic approaches that aim at describing the asymptotic value of observables in term of the root density only, such as GHD, and the locality conditions necessary for Gaussianification to occur.

Funder

European Research Council

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3