Scalable imaginary time evolution with neural network quantum states

Author:

Ledinauskas Eimantas12,Anisimovas Egidijus2

Affiliation:

1. Baltijos pažangių technologijų institutas

2. Vilnius University

Abstract

The representation of a quantum wave function as a neural network quantum state (NQS) provides a powerful variational ansatz for finding the ground states of many-body quantum systems. Nevertheless, due to the complex variational landscape, traditional methods often employ the computation of quantum geometric tensor, consequently complicating optimization techniques. Contributing to efforts aiming to formulate alternative methods, we introduce an approach that bypasses the computation of the metric tensor and instead relies exclusively on first-order gradient descent with Euclidean metric. This allows for the application of larger neural networks and the use of more standard optimization methods from other machine learning domains. Our approach leverages the principle of imaginary time evolution by constructing a target wave function derived from the Schrödinger equation, and then training the neural network to approximate this target. We make this method adaptive and stable by determining the optimal time step and keeping the target fixed until the energy of the NQS decreases. We demonstrate the benefits of our scheme via numerical experiments with 2D J_1-J_2J1J2, Heisenberg model, which showcase enhanced stability and energy accuracy in comparison to direct energy loss minimization. Importantly, our approach displays competitiveness with the well-established density matrix renormalization group method and NQS optimization with stochastic reconfiguration.

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3