Fermionic defects of topological phases and logical gates

Author:

Kobayashi Ryohei1

Affiliation:

1. University of Maryland, College Park

Abstract

We discuss the codimension-1 defects of (2+1)D bosonic topological phases, where the defects can support fermionic degrees of freedom. We refer to such defects as fermionic defects, and introduce a certain subclass of invertible fermionic defects called “gauged Gu-Wen SPT defects” that can shift self-statistics of anyons. We derive a canonical form of a general fermionic invertible defect, in terms of the fusion of a gauged Gu-Wen SPT defect and a bosonic invertible defect decoupled from fermions on the defect. We then derive the fusion rule of generic invertible fermionic defects. The gauged Gu-Wen SPT defects give rise to interesting logical gates of stabilizer codes in the presence of additional ancilla fermions. For example, we find a realization of the CZ logical gate on the (2+1)D \mathbb{Z}_22 toric code stacked with a (2+1)D ancilla trivial atomic insulator. We also investigate a gapped fermionic interface between (2+1)D bosonic topological phases realized on the boundary of the (3+1)D Walker-Wang model. In that case, the gapped interface can shift the chiral central charge of the (2+1)D phase. Among these fermionic interfaces, we study an interesting example where the (3+1)D phase has a spatial reflection symmetry, and the fermionic interface is supported on a reflection plane that interpolates a (2+1)D surface topological order and its orientation-reversal. We construct a (3+1)D exactly solvable Hamiltonian realizing this setup, and find that the model generates the \mathbb{Z}_88 classification of the (3+1)D invertible phase with spatial reflection symmetry and fermion parity on the reflection plane. We make contact with an effective field theory, known in literature as the exotic invertible phase with spacetime higher-group symmetry.

Funder

Joint Quantum Institute

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3