Affiliation:
1. University of Zaragoza
Abstract
In this paper, we analyze the circuit complexity for preparing ground states of quantum many-body systems. In particular, how this complexity grows as the ground state approaches a quantum phase transition. We discuss different definitions of complexity, namely the one following the Fubini-Study metric or the Nielsen complexity. We also explore different models: Ising, ZZXZ or Dicke. In addition, different forms of state preparation are investigated: analytic or exact diagonalization techniques, adiabatic algorithms (with and without shortcuts), and Quantum Variational Eigensolvers. We find that the divergence (or lack thereof) of the complexity near a phase transition depends on the non-local character of the operations used to reach the ground state. For Fubini-Study based complexity, we extract the universal properties and their critical exponents. In practical algorithms, we find that the complexity depends crucially on whether or not the system passes close to a quantum critical point when preparing the state. For both VQE and Adiabatic algorithms, we provide explicit expressions and bound the growth of complexity with respect to the system size and the execution time, respectively.
Funder
Consejo Superior de Investigaciones Científicas
European Commission
Gobierno de Aragón
Ministerio de Economía y Competitividad
Ministerio de Educación y Cultura - Spain
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献