Affiliation:
1. Trinity College Dublin
Abstract
We provide numerical evidence that the perturbative spectrum of
anomalous dimensions in maximally supersymmetric
SU(N)SU(N)
Yang-Mills theory is chaotic at finite values of
NN.
We calculate the probability distribution of one-loop level spacings for
subsectors of the theory and show that for large
NN
it is given by the Poisson distribution of integrable models, while at
finite values it is the Wigner-Dyson distribution of the Gaussian
orthogonal ensemble random matrix theory. We extend these results to
two-loop order and to a one-parameter family of deformations. We further
study the spectral rigidity for these models and show that it is also
well described by random matrix theory. Finally we demonstrate that the
finite-NN
eigenvectors possess properties of chaotic states.
Funder
European Commission
Science Foundation Ireland
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献