Cavity induced collective behavior in the polaritonic ground state

Author:

Rokaj Vasil12,Mistakidis Simeon I.12,Sadeghpour H. R.2

Affiliation:

1. Harvard University

2. Smithsonian Astrophysical Observatory

Abstract

Cavity quantum electrodynamics provides an ideal platform to engineer and control light-matter interactions with polariton quasiparticles. In this work, we investigate collective phenomena in a system of many particles in a harmonic trap coupled to a homogeneous cavity vacuum field. The system couples collectively to the cavity field, through its center of mass, and collective polariton states emerge. The cavity field mediates pairwise long-range interactions and enhances the effective mass of the particles. This leads to an enhancement of localization in the matter ground state density, which features a maximum when light and matter are on resonance, and demonstrates a Dicke-like, collective behavior with the particle number. The light-matter interaction also modifies the photonic properties of the polariton system, as the ground state is populated with bunched photons. In addition, it is shown that the diamagnetic A^2A2 term is necessary for the stability of the system, as otherwise the superradiant ground state instability occurs. We demonstrate that coherent transfer of polaritonic population is possible with an external magnetic field and by monitoring the Landau-Zener transition probability.

Funder

National Science Foundation

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3