Interplay of Kelvin-Helmholtz and superradiant instabilities of an array of quantized vortices in a two-dimensional Bose-Einstein condensate

Author:

Giacomelli Luca12,Carusotto Iacopo12

Affiliation:

1. Pitaevskii Center on Bose-Einstein Condensation

2. University of Trento

Abstract

We investigate the various physical mechanisms that underlie the dynamical instability of a quantized vortex array at the interface between two counter-propagating superflows in a two-dimensional Bose–Einstein condensate. Instabilities of markedly different nature are found to dominate in different flow velocity regimes. For moderate velocities where the two flows are subsonic, the vortex lattice displays a quantized version of the hydrodynamic Kelvin–Helmholtz instability (KHI), with the vortices rolling up and co-rotating. For supersonic flow velocities, the oscillation involved in the KHI can resonantly couple to acoustic excitations propagating away in the bulk fluid on both sides. This makes the KHI rate to be effectively suppressed and other mechanisms to dominate: For finite and relatively small systems along the transverse direction, the instability involves a repeated superradiant scattering of sound waves off the vortex lattice; for transversally unbound systems, a radiative instability dominates, leading to the simultaneous growth of a localized wave along the vortex lattice and of acoustic excitations propagating away in the bulk. Finally, for slow velocities, where the KHI rate is intrinsically slow, another instability associated to the rigid lateral displacement of the vortex lattice due to the vicinity of the system’s boundary is found to dominate.

Funder

Horizon 2020

Provincia Autonoma di Trento

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3