Dissipation-induced topological insulators: A no-go theorem and a recipe

Author:

Goldstein Moshe1

Affiliation:

1. Tel Aviv University

Abstract

Nonequilibrium conditions are traditionally seen as detrimental to the appearance of quantum-coherent many-body phenomena, and much effort is often devoted to their elimination. Recently this approach has changed: It has been realized that driven-dissipative dynamics could be used as a resource. By proper engineering of the reservoirs and their couplings to a system, one may drive the system towards desired quantum-correlated steady states, even in the absence of internal Hamiltonian dynamics. An intriguing category of equilibrium many-particle phases are those which are distinguished by topology rather than by symmetry. A natural question thus arises: which of these topological states can be achieved as the result of dissipative Lindblad-type (Markovian) evolution? Beside its fundamental importance, it may offer novel routes to the realization of topologically-nontrivial states in quantum simulators, especially ultracold atomic gases. Here I give a general answer for Gaussian states and quadratic Lindblad evolution, mostly concentrating on the example of 2D Chern insulator states. I prove a no-go theorem stating that a finite-range Lindbladian cannot induce finite-rate exponential decay towards a unique topological pure state above 1D. I construct a recipe for creating such state by exponentially-local dynamics, or a mixed state arbitrarily close to the desired pure one via finite-range dynamics. I also address the cold-atom realization, classification, and detection of these states. Extensions to other types of topological insulators and superconductors are also discussed.

Funder

German-Israeli Foundation for Scientific Research and Development

Israel Science Foundation

Ministry of Science and Technology, Israel

United States - Israel Binational Science Foundation

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Area law for steady states of detailed-balance local Lindbladians;Journal of Mathematical Physics;2024-05-01

2. Fate of high winding number topological phases in the disordered extended Su-Schrieffer-Heeger model;Physical Review B;2024-01-09

3. Edge-Selective Extremal Damping from Topological Heritage of Dissipative Chern Insulators;Physical Review Letters;2023-12-18

4. Diffuzionnye mody dvukhzonnykh fermionov v usloviyakh dissipativnoy dinamiki, sokhranyayushchey chislo chastits;Письма в Журнал экспериментальной и теоретической физики;2023-12-15

5. Dissipative boundary state preparation;Physical Review Research;2023-12-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3