Fractons, dipole symmetries and curved spacetime

Author:

Bidussi Leo1,Hartong Jelle1,Have Emil1,Musaeus Jørgen1,Prohazka Stefan1

Affiliation:

1. University of Edinburgh

Abstract

We study complex scalar theories with dipole symmetry and uncover a no-go theorem that governs the structure of such theories and which, in particular, reveals that a Gaussian theory with linearly realised dipole symmetry must be Carrollian. The gauging of the dipole symmetry via the Noether procedure gives rise to a scalar gauge field and a spatial symmetric tensor gauge field. We construct a worldline theory of mobile objects that couple gauge invariantly to these gauge fields. We systematically develop the canonical theory of a dynamical symmetric tensor gauge field and arrive at scalar charge gauge theories in both Hamiltonian and Lagrangian formalism. We compute the dispersion relation of the modes of this gauge theory, and we point out an analogy with partially massless gravitons. It is then shown that these fractonic theories couple to Aristotelian geometry, which is a non-Lorentzian geometry characterised by the absence of boost symmetries. We generalise previous results by coupling fracton theories to curved space and time. We demonstrate that complex scalar theories with dipole symmetry can be coupled to general Aristotelian geometries as long as the symmetric tensor gauge field remains a background field. The coupling of the scalar charge gauge theory requires a Lagrange multiplier that restricts the Aristotelian geometries.

Funder

Engineering and Physical Sciences Research Council

Erwin Schrödinger International Institute for Mathematics and Physics

Leverhulme Trust

Royal Society

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3