Spin conductivity of the XXZ chain in the antiferromagnetic massive regime

Author:

Göhmann Frank1,Kozlowski Karol2,Sirker Jesko3,Suzuki Junji4

Affiliation:

1. University of Wuppertal

2. University of Lyon

3. University of Manitoba

4. Shizuoka University

Abstract

We present a series representation for the dynamical two-point function of the local spin current for the XXZ chain in the antiferromagnetic massive regime at zero temperature. From this series we can compute the correlation function with very high accuracy up to very long times and large distances. Each term in the series corresponds to the contribution of all scattering states of an even number of excitations. These excitations can be interpreted in terms of an equal number of particles and holes. The lowest term in the series comprises all scattering states of one hole and one particle. This term determines the long-time large-distance asymptotic behaviour which can be obtained explicitly from a saddle-point analysis. The space-time Fourier transform of the two-point function of currents at zero momentum gives the optical spin conductivity of the model. We obtain highly accurate numerical estimates for this quantity by numerically Fourier transforming our data. For the one-particle, one-hole contribution, equivalently interpreted as a two-spinon contribution, we obtain an exact and explicit expression in terms of known special functions. For large enough anisotropy, the two-spinon contribution carries most of the spectral weight, as can be seen by calculating the f-sum rule.

Funder

Centre National de la Recherche Scientifique

Deutsche Forschungsgemeinschaft

European Research Council

Japan Society for the Promotion of Science

Natural Sciences and Engineering Research Council

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3