Peacock patterns and new integer invariants in topological string theory

Author:

Gu Jie12,Mariño Marcos1

Affiliation:

1. University of Geneva

2. Southeast University

Abstract

Topological string theory near the conifold point of a Calabi--Yau threefold gives rise to factorially divergent power series which encode the all-genus enumerative information. These series lead to infinite towers of singularities in their Borel plane (also known as ``peacock patterns"), and we conjecture that the corresponding Stokes constants are integer invariants of the Calabi--Yau threefold. We calculate these Stokes constants in some toric examples, confirming our conjecture and providing in some cases explicit generating functions for the new integer invariants, in the form of $q$-series. Our calculations in the toric case rely on the TS/ST correspondence, which promotes the asymptotic series near the conifold point to spectral traces of operators, and makes it easier to identify the Stokes data. The resulting mathematical structure turns out to be very similar to the one of complex Chern--Simons theory. In particular, spectral traces correspond to state integral invariants and factorize in holomorphic/anti-holomorphic blocks.

Funder

European Research Council

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3