Transport through interacting defects and lack of thermalisation

Author:

del Vecchio del Vecchio Giuseppe1,De Luca Andrea2,Bastianello Alvise34

Affiliation:

1. King's College London

2. CY Cergy Paris University

3. Munich Center for Quantum Science and Technology

4. Technical University of Munich

Abstract

We consider 1D integrable systems supporting ballistic propagation of excitations, perturbed by a localised defect that breaks most conservation laws and induces chaotic dynamics. Focusing on classical systems, we study an out-of-equilibrium protocol engineered activating the defect in an initially homogeneous and far from the equilibrium state. We find that large enough defects induce full thermalisation at their center, but nonetheless the outgoing flow of carriers emerging from the defect is non-thermal due to a generalization of the celebrated Boundary Thermal Resistance effect, occurring at the edges of the chaotic region. Our results are obtained combining ab-initio numerical simulations for relatively small-sized defects, with the solution of the Boltzmann equation, which becomes exact in the scaling limit of large, but weak defects.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mesoscopic impurities in generalized hydrodynamics;Journal of Statistical Mechanics: Theory and Experiment;2024-03-05

2. Eigenstate thermalization and its breakdown in quantum spin chains with inhomogeneous interactions;Physical Review B;2024-01-22

3. Transport and Entanglement across Integrable Impurities from Generalized Hydrodynamics;Physical Review Letters;2023-10-10

4. A hydrodynamic approach to Stark localization;Journal of Statistical Mechanics: Theory and Experiment;2023-07-01

5. Stationary time correlations for fermions after a quench in the presence of an impurity;Europhysics Letters;2023-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3