Abstract
The dynamics of cold strongly magnetized plasma -- traditionally the domain of force-free electrodynamics -- has recently been reformulated in terms of symmetries and effective field theory, where the degrees of freedom are the momentum and magnetic flux carried by a fluid of cold strings. In physical applications where the electron mass can be neglected one might expect the presence of extra light charged modes -- electrons in the lowest Landau level -- propagating parallel to the magnetic field lines. We construct an effective description of such electric charges, describing their interaction with plasma degrees of freedom in terms of a new collective mode that can be thought of as a bosonization of the electric charge density along each field line. In this framework QED phenomena such as charged pair production and the axial anomaly are described at the classical level. Formally, our construction corresponds to gauging a particular part of the higher form symmetry associated with magnetic flux conservation. We study some simple applications of our effective theory, showing that the scattering of magnetosonic modes generically creates particles and that the rotating Michel monopole is now surrounded by a cloud of electric charge.
Funder
National Science Foundation
Science and Technology Facilities Council
Simons Foundation
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献