A novel background field approach to the confinement-deconfinement transition

Author:

van Egmond Duifje Maria1,Reinosa Urko1,Serreau Julien2,Tissier Matthieu3

Affiliation:

1. Center of Theoretical Physics

2. University of Paris

3. Laboratory of Theoretical Physics of Condensed Matter

Abstract

We propose a novel approach to the confinement-deconfinement transition in Yang-Mills theories in the context of gauge-fixed calculations. The method is based on a background-field generalisation of the Landau gauge (to which it reduces at vanishing temperature) with a given, center-symmetric background. This is to be contrasted with most implementations of background field methods in gauge theories, where one uses a variable, self-consistent background. Our proposal is a bona fide gauge fixing that can easily be implemented on the lattice and in continuum approaches. The resulting gauge-fixed action explicitly exhibits the center symmetry of the nonzero temperature theory that controls the confinement-deconfinement transition. We show that, in that gauge, the electric susceptibility diverges at a second order transition [e.g., in the SU(2) theory], so that the gluon propagator is a clear probe of the transition. We implement our proposal in the perturbative Curci-Ferrari model, known for its successful description of various infrared aspects of Yang-Mills theories, including the confinement-deconfinement transition. Our one-loop calculation confirms our general expectation for the susceptibility while providing transition temperatures in excellent agreement with the SU(2) and SU(3) lattice values. Finally, the Polyakov loops above the transition show a more moderate rise, in contrast to previous implementations of the Curci-Ferrari model using a self-consistent background, and our SU(3) result agrees quite well with the lattice data in the range [0,2T_c][0,2Tc].

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3