Novel attractive pairing interaction in strongly correlated superconductors

Author:

Adhikary Priyo1,Das Tanmoy1

Affiliation:

1. Indian Institute of Science Bangalore

Abstract

Conventional and unconventional superconductivity, respectively, arise from attractive (electron-phonon) and repulsive (many-body Coulomb) interactions with fixed-sign and sign-reversal pairing symmetries. Although heavy-fermions, cuprates, and pnictides are widely believed to be unconventional superconductors, recent evidence in one of the heavy fermion superconductor (CeCu_22Si_22) indicate the presence of a novel conventional type pairing symmetry beyond the electron-phonon coupling. We present a new mechanism of attractive potential between electrons, mediated by emergent boson fields (vacuum or holon) in the strongly correlated mixed valence compounds. In the strong coupling limit, localized electron sites are protected from double occupancy, which results in an emergent holon fields. The holon states can, however, attract conduction electrons through valence fluctuation channel, and the resulting doubly occupied states with local and conduction electrons condenseas Cooper pairs with onsite, fixed-sign, s-wave pairing symmetry. We develop the corresponding self-consistent theory of superconductivity, and compare the results with experiments. Our theory provides a new mechanism of superconductivity whose applicability extends to the wider class of intermetallic/mixed-valence materials and other flat-band metals.

Funder

Department of Science and Technology, Ministry of Science and Technology

Infosys Foundation

Science and Engineering Research Board

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3