On correlation functions for the open XXZ chain with non-longitudinal boundary fields: The case with a constraint

Author:

Niccoli Giuliano1,Terras Véronique2ORCID

Affiliation:

1. University of Lyon

2. University of Paris-Saclay

Abstract

This paper is a continuation of [J. Phys. A: Math. Theor. 55, 405203 (2022)], in which a set of matrix elements of local operators was computed for the XXZ spin-1/2 open chain with a particular case of unparallel boundary fields. Here, we extend these results to the more general case in which both fields are non-longitudinal and related by one constraint, allowing for a partial description of the spectrum by usual Bethe equations. More precisely, the complete spectrum and eigenstates can be characterized within the Separation of Variables (SoV) framework. One uses here the fact that, under the constraint, a part of this SoV spectrum can be described via solutions of a usual, homogeneous, TQ-equation, with corresponding transfer matrix eigenstates coinciding with generalized Bethe states. We explain how to generically compute the action of a basis of local operators on such kind of states, and this under the most general boundary condition on the last site of the chain. As a result, we can compute the matrix elements of some of these basis elements in any eigenstate described by the homogenous TQ-equation. Assuming, following a conjecture of Nepomechie and Ravanini, that the ground state itself can be described in this framework, we obtain multiple integral representations for these matrix elements in the half-infinite chain limit, generalizing those previously obtained in the case of longitudinal boundary fields and in the case of the special boundary conditions considered in [J. Phys. A: Math. Theor. 55, 405203 (2022)].

Funder

Centre National de la Recherche Scientifique

École Normale Supérieure de Lyon

Publisher

Stichting SciPost

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3