Affiliation:
1. University of Southampton
2. Laboratory of Instrumentation and Experimental Particles Physics
3. University of Lisbon
4. National Institute for Subatomic Physics
Abstract
We present a survey of a comprehensive set of jet substructure observables commonly used to study the modifications of jets resulting from interactions with the Quark Gluon Plasma in Heavy Ion Collisions. The JEWEL event generator is used to produce simulated samples of quenched and unquenched jets. Three distinct analyses using Machine Learning techniques on the jet substructure observables have been performed to identify both linear and non-linear relations between the observables, and to distinguish the Quenched and Unquenched jet samples. We find that most of the observables are highly correlated, and that their information content can be captured by a small set of observables. We also find that the correlations between observables are resilient to quenching effects and that specific pairs of observables exhaust the full sensitivity to quenching effects. The code, the datasets, and instructions on how to reproduce this work are also provided.
Funder
European Research Council
Fundação para a Ciência e a Tecnologia
Horizon 2020
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献