Classifying irreducible fixed points of five scalar fields in perturbation theory

Author:

Rong Junchen1,Rychkov Slava1

Affiliation:

1. Institut des Hautes Études Scientifiques

Abstract

Classifying perturbative fixed points near upper critical dimensions plays an important role in understanding the space of conformal field theories and critical phases of matter. In this work, we consider perturbative fixed points of N=5 scalar bosons coupled with quartic interactions preserving an arbitrary subgroup G\subset O(5). We perform an exhaustive algorithmic search over the symmetry groups G which are irreducible and satisfy the Landau condition, so that the fixed point can be reached by fine-tuning a single mass term and there is no need to tune the cubic couplings. We also impose stability of the RG flow in the space of quartic couplings, and reality. We thus prove that there exist no new stable fixed points in d=4-\epsilonϵ dimensions beyond the two known ones: namely the O(5) nvariant fixed point and the Cubic(5) fixed point. This work is a continuation of the classification of such fixed points with N=4 scalars by Toledano, Michel, Toledano and Brézin in 1985 [Phys. Rev. B 31, 7171 (1985)].

Funder

Simons Foundation

Publisher

Stichting SciPost

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3