Weakly interacting Bose gas with two-body losses

Author:

Liu Chang1,Shi Zheyu2ORCID,Wang Ce3

Affiliation:

1. Tsinghua University

2. East China Normal University

3. Tongji University

Abstract

We study the many-body dynamics of weakly interacting Bose gases with two-particle losses. We show that both the two-body interactions and losses in atomic gases may be tuned by controlling the inelastic scattering process between atoms by an optical Feshbach resonance. Interestingly, the low-energy behavior of the scattering amplitude is governed by a single parameter, i.e. the complex ss-wave scattering length a_cac. The many-body dynamics are thus described by a Lindblad master equation with complex scattering length. We solve this equation by applying the Bogoliubov approximation in analogy to the closed systems. Various peculiar dynamical properties are discovered, some of them may be regarded as the dissipative counterparts of the celebrated results in closed Bose gases. For example, we show that the next-order correction to the mean-field particle decay rate is to the order of |n a_c^{3}|^{1/2}|nac3|1/2, which is an analogy of the Lee-Huang-Yang correction of Bose gases. It is also found that there exists a dynamical symmetry of symplectic group Sp(4,\mathbb{C})(4,) in the quadratic Bogoliubov master equation, which is an analogy of the SU(1,1) dynamical symmetry of the corresponding closed system. We further confirmed the validity of the Bogoliubov approximation by comparing its results with a full numerical calculation in a double-well toy model. Generalizations of other alternative approaches such as the dissipative version of the Gross-Pitaevskii equation and hydrodynamic theory are also discussed in the last.

Funder

National Natural Science Foundation of China

Publisher

Stichting SciPost

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3