Observation of non-local impedance response in a passive electrical circuit

Author:

Zhang Xiao1,Zhang Boxue1,Zhao Weihong1,Lee Ching Hua23

Affiliation:

1. Sun Yat-sen University

2. Tianjin University

3. National University of Singapore

Abstract

In media with only short-ranged couplings and interactions, it is natural to assume that physical responses must be local. Yet, we discover that this is not necessarily true, even in a system as commonplace as an electric circuit array. This work reports the experimental observation of non-local impedance response in a designed circuit network consisting exclusively of passive elements such as resistors, inductors and capacitors (RLC). Measurements reveal that the removal of boundary connections dramatically affects the two-point impedance between certain distant nodes, even in the absence of any amplification mechanism for the voltage signal. This non-local impedance response is distinct from the reciprocal non-Hermitian skin effect, affecting only selected pairs of nodes even as the circuit Laplacian exhibits universally broken spectral bulk-boundary correspondence. Surprisingly, not only are component parasitic resistances unable to erode the non-local response, but they in fact give rise to novel loss-induced topological modes at sufficiently large system sizes, constituting a new manifestation of the critical non-Hermitian skin effect. Our findings chart a new route towards attaining non-local responses in photonic or electrical metamaterials without involving non-linear, non-local, active or amplificative elements.

Funder

Ministry of Education - Singapore

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3