Laser excitation of the 1s-hyperfine transition in muonic hydrogen

Author:

Amaro Pedro1,Adamczak A.2,Abdou Ahmed M.3,Affolter L.4,Amaro F. D.5,Carvalho Patricia1,Chen T. -L.6,Fernandes L. M. P.5,Ferro M.1,Goeldi D.4,Graf T.3,Guerra M.1,Hänsch Theodor78,Henriques C. A. O.5,Huang Y. -C.6,Indelicato P.9,Kara O.4,Kirch Klaus104,Knecht Andreas10,Kottmann Franz104,Liu Y. -W.6,Machado Jorge1,Marszalek M.10,Mano R. D. P.5,Monteiro C. M. B.5,Nez F.9,Nuber J.104,Ouf A.11,Paul N.9,Pohl Randolf11,Rapisarda E.10,dos Santos J. M. F.5,Santos J. P.1,Silva P. A. O. C.5,Sinkunaite L.10,Shy J. -T.6,Schuhmann K.4,Rajamohanan S.11,Soter Anna4,Sustelo L.1,Taqqu David104,Wang L. -B.6,Wauters Frederik11,Yzombard P.9,Zeyen M.4,Antognini Aldo104

Affiliation:

1. NOVA University Lisbon

2. Institute of Nuclear Physics Polish Academy of Sciences

3. University of Stuttgart

4. Swiss Federal Institute of Technology in Zurich (ETH)

5. University of Coimbra

6. National Tsing Hua University

7. Ludwig Maximilian University of Munich

8. Max Planck Institute of Quantum Optics

9. Kastler-Brossel Laboratory

10. Paul Scherrer Institute

11. Johannes Gutenberg University of Mainz

Abstract

The CREMA collaboration is pursuing a measurement of the ground-state hyperfine splitting (HFS) in muonic hydrogen (\muμp) with 1 ppm accuracy by means of pulsed laser spectroscopy to determine the two-photon-exchange contribution with 2\times10^{-4}2×104 relative accuracy. In the proposed experiment, the \muμp atom undergoes a laser excitation from the singlet hyperfine state to the triplet hyperfine state, then is quenched back to the singlet state by an inelastic collision with a H_22 molecule. The resulting increase of kinetic energy after the collisional deexcitation is used as a signature of a successful laser transition between hyperfine states. In this paper, we calculate the combined probability that a \muμp atom initially in the singlet hyperfine state undergoes a laser excitation to the triplet state followed by a collisional-induced deexcitation back to the singlet state. This combined probability has been computed using the optical Bloch equations including the inelastic and elastic collisions. Omitting the decoherence effects caused by the laser bandwidth and collisions would overestimate the transition probability by more than a factor of two in the experimental conditions. Moreover, we also account for Doppler effects and provide the matrix element, the saturation fluence, the elastic and inelastic collision rates for the singlet and triplet states, and the resonance linewidth. This calculation thus quantifies one of the key unknowns of the HFS experiment, leading to a precise definition of the requirements for the laser system and to an optimization of the hydrogen gas target where \muμp is formed and the laser spectroscopy will occur.

Funder

Agence Nationale de la Recherche

Deutsche Forschungsgemeinschaft

European Research Council

Fundação para a Ciência e a Tecnologia

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3