Dual applications of Chebyshev polynomials method: Efficiently finding thousands of central eigenvalues for many-spin systems

Author:

Guan Haoyu1,Zhang Wenxian1

Affiliation:

1. Wuhan University

Abstract

Computation of a large group of interior eigenvalues at the middle spectrum is an important problem for quantum many-body systems, where the level statistics provides characteristic signatures of quantum chaos. We propose an exact numerical method, dual applications of Chebyshev polynomials (DACP), to simultaneously find thousands of central eigenvalues, where the level space decreases exponentially with the system size. To disentangle the near-degenerate problem, we employ twice the Chebyshev polynomials, to construct an exponential semicircle filter as a preconditioning step and to generate a large set of proper basis states in the desired subspace. Numerical calculations on Ising spin chain and spin glass shards confirm the correctness and efficiency of DACP. As numerical results demonstrate, DACP is 30 times faster than the state-of-the-art shift-invert method for the Ising spin chain while 8 times faster for the spin glass shards. In contrast to the shift-invert method, the computation time of DACP is only weakly influenced by the required number of eigenvalues, which renders it a powerful tool for large scale eigenvalues computations. Moreover, the consumed memory also remains a small constant (5.6 GB) for spin-1/2 systems consisting of up to 20 spins, making it desirable for parallel computing.

Funder

National Natural Science Foundation of China

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3