Displaced Drude peak and bad metal from the interaction with slow fluctuations.

Author:

Fratini Simone1,Ciuchi Sergio23

Affiliation:

1. Grenoble Alpes University

2. Institute for Complex Systems

3. University of L'Aquila

Abstract

Scattering by slowly fluctuating degrees of freedom can cause a transient localization of the current-carrying electrons in metals, driving the system away from normal metallic behavior. We illustrate and characterize this general phenomenon by studying how signatures of localization emerge in the optical conductivity of electrons interacting with slow bosonic fluctuations. The buildup of quantum localization corrections manifests itself in the emergence of a displaced Drude peak (DDP), whose existence strongly alters the low frequency optical response and suppresses the d.c. conductivity. We find that for sufficiently strong interactions, many-body renormalization of the fluctuating field induced at metallic densities enhances electron localization and the ensuing DDP phenomenon in comparison with the well-studied low concentration limit. Our results are compatible with the frequent observation of DDPs in electronic systems where slowly fluctuating degrees of freedom couple significantly to the charge carriers.

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Displaced Drude peak from π -ton vertex corrections;Physical Review B;2024-08-09

2. Quantum acoustics unravels Planckian resistivity;Proceedings of the National Academy of Sciences;2024-07-05

3. Transient Localization from the Interaction with Quantum Bosons;Physical Review Letters;2024-06-24

4. Quantum-Acoustical Drude Peak Shift;Physical Review Letters;2024-05-03

5. Strange metal behavior from incoherent carriers scattered by local moments;Physical Review B;2023-12-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3