Detecting nematic order in STM/STS data with artificial intelligence

Author:

Goetz Jeremy B.12,Zhang Yi32,Lawler Michael12

Affiliation:

1. Binghamton University

2. Cornell University

3. Peking University

Abstract

Detecting the subtle yet phase defining features in Scanning Tunneling Microscopy and Spectroscopy data remains an important challenge in quantum materials. We meet the challenge of detecting nematic order from the local density of states data with supervised machine learning and artificial neural networks for the difficult scenario without sharp features such as visible lattice Bragg peaks or Friedel oscillation signatures in the Fourier transform spectrum. We train the artificial neural networks to classify simulated data of symmetric and nematic two-dimensional metals in the presence of disorder. The supervised machine learning succeeds only with at least one hidden layer in the ANN architecture, demonstrating it is a higher level of complexity than a nematic order detected from Bragg peaks, which requires just two neurons. We apply the finalized ANN to experimental STM data on CaFe_22As_22, and it predicts nematic symmetry breaking with dominating confidence, in agreement with previous analysis. Our results suggest ANNs could be a useful tool for the detection of nematic order in STM data and a variety of other forms of symmetry breaking.

Funder

Cornell University

National Science Foundation

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3