Efficient ab initio many-body calculations based on sparse modeling of Matsubara Green's function

Author:

Shinaoka Hiroshi1,Chikano Naoya1,Gull Emanuel2,Li Jia2,Nomoto Takuya3,Otsuki Junya4,Wallerberger Markus5,Wang Tianchun3,Yoshimi Kazuyoshi3

Affiliation:

1. Saitama University

2. University of Michigan–Ann Arbor

3. University of Tokyo

4. Okayama University

5. Vienna University of Technology

Abstract

This lecture note reviews recently proposed sparse-modeling approaches for efficient ab initio many-body calculations based on the data compression of Green's functions. The sparse-modeling techniques are based on a compact orthogonal basis, an intermediate representation (IR) basis, for imaginary-time and Matsubara Green's functions. A sparse sampling method based on the IR basis enables solving diagrammatic equations efficiently. We describe the basic properties of the IR basis, the sparse sampling method and its applications to ab initio calculations based on the GW approximation and the Migdal--Eliashberg theory. We also describe a numerical library for the IR basis and the sparse sampling method, sparse-ir, and provide its sample codes. This lecture note follows the Japanese review article [H. Shinaoka et al., Solid State Physics 56(6), 301 (2021)].

Funder

Austrian Science Fund

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Simons Foundation

Publisher

Stichting SciPost

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3