Continuous N\'{e}el-VBS quantum phase transition in non-local one-dimensional systems with SO(3) symmetry

Author:

Jian Chao-Ming1,Xu Yichen2,Wu Xiao-Chuan2,Xu Cenke2

Affiliation:

1. Microsoft

2. University of California, Santa Barbara

Abstract

One dimensional (1d) interacting systems with local Hamiltonians can be studied with various well-developed analytical methods. Recently novel 1d physics was found numerically in systems with either spatially nonlocal interactions, or at the 1d boundary of 2d quantum critical points, and the critical fluctuation in the bulk also yields effective nonlocal interactions at the boundary. This work studies the edge states at the 1d boundary of 2d strongly interacting symmetry protected topological (SPT) states, when the bulk is driven to a disorder-order phase transition. We will take the 2d Affleck-Kennedy-Lieb-Tasaki (AKLT) state as an example, which is a SPT state protected by the SO(3) spin symmetry and spatial translation. We found that the original (1+1)d boundary conformal field theory of the AKLT state is unstable due to coupling to the boundary avatar of the bulk quantum critical fluctuations. When the bulk is fixed at the quantum critical point, within the accuracy of our expansion method, we find that by tuning one parameter at the boundary, there is a generic direct transition between the long range antiferromagnetic Néel order and the valence bond solid (VBS) order. This transition is very similar to the Néel-VBS transition recently found in numerical simulation of a spin-1/2 chain with nonlocal spatial interactions. Connections between our analytical studies and recent numerical results concerning the edge states of the 2d AKLT-like state at a bulk quantum phase transition will also be discussed.

Funder

David and Lucile Packard Foundation

National Science Foundation

Simons Foundation

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3