Stationarization and Multithermalization in spin glasses

Author:

Contucci Pierluigi1,Corberi Federico23,Kurchan Jorge4,Mingione Emanuele1

Affiliation:

1. University of Bologna

2. National Institute for Nuclear Physics

3. University of Salerno

4. École Normale Supérieure

Abstract

We develop further the study of a system in contact with a multibath having different temperatures at widely separated timescales. We consider those systems that do not thermalize in finite times when in contact with an ordinary bath but may do so in contact with a multibath. Thermodynamic integration is possible, thus allowing one to recover the stationary distribution on the basis of measurements performed in a `multi-reversible' transformation. We show that following such a protocol the system is at each step described by a generalization of the Boltzmann-Gibbs distribution, that has been studied in the past. Guerra's bound interpolation scheme for spin-glasses is closely related to this: by translating it into a dynamical setting, we show how it may actually be implemented in practice. The phase diagram plane of temperature vs ``number of replicas", long studied in spin- glasses, in our approach becomes simply that of the two temperatures the system is in contact with. We suggest that this representation may be used to directly compare phenomenological and mean-field inspired models. Finally, we show how an approximate out of equilibrium probability distribution may be inferred experimentally on the basis of measurements along an almost reversible transformation.

Funder

Simons Foundation

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3