Supervised learning of few dirty bosons with variable particle number

Author:

Mujal Pere123,Martínez Miguel Àlex23,Polls Artur23,Juliá-Díaz Bruno23,Pilati Sebastiano4

Affiliation:

1. Institute for Cross-Disciplinary Physics and Complex Systems

2. Institute of Cosmos Sciences, University of Barcelona

3. University of Barcelona

4. University of Camerino

Abstract

We investigate the supervised machine learning of few interacting bosons in optical speckle disorder via artificial neural networks. The learning curve shows an approximately universal power-law scaling for different particle numbers and for different interaction strengths. We introduce a network architecture that can be trained and tested on heterogeneous datasets including different particle numbers. This network provides accurate predictions for all system sizes included in the training set and, by design, is suitable to attempt extrapolations to (computationally challenging) larger sizes. Notably, a novel transfer-learning strategy is implemented, whereby the learning of the larger systems is substantially accelerated and made consistently accurate by including in the training set many small-size instances.

Funder

European Commission

Generalitat de Catalunya

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3