$T\bar T$ and the mirage of a bulk cutoff

Author:

Guica Monica123,Monten Ruben1

Affiliation:

1. L'Institut de physique théorique

2. Nordic Institute for Theoretical Physics

3. Stockholm University

Abstract

We use the variational principle approach to derive the large NN holographic dictionary for two-dimen-sional T\bar TTT-deformed CFTs, for both signs of the deformation parameter. The resulting dual gravitational theory has mixed boundary conditions for the non-dynamical graviton; the boundary conditions for matter fields are undeformed. When the matter fields are turned off and the deformation parameter is negative, the mixed boundary conditions for the metric at infinity can be reinterpreted on-shell as Dirichlet boundary conditions at finite bulk radius, in agreement with a previous proposal by McGough, Mezei and Verlinde. The holographic stress tensor of the deformed CFT is fixed by the variational principle, and in pure gravity it coincides with the Brown-York stress tensor on the radial bulk slice with a particular cosmological constant counterterm contribution. In presence of matter fields, the connection between the mixed boundary conditions and the radial ``bulk cutoff’’ is lost. Only the former correctly reproduce the energy of the bulk configuration, as expected from the fact that a universal formula for the deformed energy can only depend on the universal asymptotics of the bulk solution, rather than the details of its interior. The asymptotic symmetry group associated with the mixed boundary conditions consists of two commuting copies of a state-dependent Virasoro algebra, with the same central extension as in the original CFT.

Funder

European Research Council

National Science Foundation

Vetenskapsrådet

Publisher

Stichting SciPost

Subject

General Physics and Astronomy

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3