Hydrodynamic fluctuations and topological susceptibility in chiral magnetohydrodynamics

Author:

Das Arpit1ORCID,Iqbal Nabil2ORCID,Poovuttikul Napat3

Affiliation:

1. University of Edinburgh

2. Durham University

3. Chulalongkorn University

Abstract

Chiral magnetohydrodynamics is devoted to understanding the late-time and long-distance behavior of a system with an Adler-Bell-Jackiw anomaly at finite temperatures. The non-conservation of the axial charge is determined by the topological density \vec{E} \cdot \vec{B}EB; in a classical hydrodynamic description this decay rate can be suppressed by tuning the background magnetic field to zero. However it is in principle possible for thermal fluctuations of \vec{E} \cdot \vec{B}EB to result in a non-conservation of the charge even at vanishing BB-field; this would invalidate the classical hydrodynamic effective theory. We investigate this by computing the real-time susceptibility of the topological density at one-loop level in magnetohydrodynamic fluctuations, relating its low-frequency limit to the decay rate of the axial charge. We find that the frequency-dependence of this susceptibility is sufficiently soft as to leave the axial decay rate unaffected, validating the classical hydrodynamic description. We show that the susceptibility contains non-analytic frequency-dependence which is universally determined by hydrodynamic data. We comment briefly on possible connections to the recent formulation of the ABJ anomaly in terms of non-invertible symmetry.

Funder

Chulalongkorn University

Science and Technology Facilities Council

Publisher

Stichting SciPost

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3